伦理网站_欧美gvfreevideosxxxx_男女激烈动图_国产精品白浆在线播放

VOCs治理系統的有效性評價方法

揮發性有機物(VOCs)作為臭氧和PM2.5的重要前驅物,是我國當前空氣污染的主要來源,VOCs及所形成的二次污染物會對人類健康及生存環境產生巨大的負面影響。隨著國家和地方政策的不斷升級,VOCs治理市場在“十三五”、“十四五”期間達到數千億的市場規模,因此,對工業源排放的VOCs進行治理,并達到國家、地方排放標準的要求勢在必行。


2020年是“十三五”的最后一年,生態環境部印發《2020年揮發性有機物治理攻堅方案》,要求各級生態環境部門要高度重視,把揮發性有機物(VOCs)治理攻堅作為打贏藍天保衛戰的重要任務。生態環境部相關負責人表示,通過VOCs治理攻堅行動,推動我國VOCs治理能力進一步提升,VOCs排放量明顯降低,夏季O3污染得到遏制,重點區域、蘇皖魯豫交界地區及其他O3污染防治任務重的地區城市夏季優良天同比增加,推動“十三五”規劃確定的各省(區、市)優良天數比率約束性指標全面完成。


一、VOCs排放企業的特點


與煙氣治理企業相比,VOCs排放企業具有以下特點:

a)“多”:涉及行業多、企業多。比較大的行業有:石油,煉油和化工行業、噴漆和涂裝行業、印刷業、包裝、有機化工等行業、基本有機化工企業、精細有機化工企業、高分子有機化工企業等,即使高分子有機化工企業也包括合成樹脂及塑料、合成橡膠和合成纖維等類型的企業,所以需要治理的企業多,差異性大。

b)“雜”:企業差別大,技術方案雜:由于行業眾多,不同行業工藝路線差別大,即使同一行業、同一化學品的生產工藝,不同企業也有一定的差異,所以造成VOCs排放成分復雜、濃度波動大、間歇性排放等,使得治理工藝復雜、技術方案難度大;

c)“難”:既要好,又要便宜,還要維護少:廢氣的成組分、溫度、濕度、濃度、風量等基本參數不同,采取治理技術差異很大,同樣的治理技術,在不同條件下凈化效率差異同樣很大,缺乏針對性的評價系統對具體工況進行分析與評測;

d)“亂”:沒有標準,競爭亂象:標準低或標準執行不到位、競爭無序,沒有真正解決問題而又造成了二次污染。


二、VOCs排放的評價方法


VOCs的治理技術、設備與工程均與VOCs達標與否有著直接的關系,但是VOCs排放的有效性評價也是至關重要的一環。有效性評價是一把尺子,衡量指標包括凈化率、出口濃度、排放速率等,評價手段包括第三方評測和在線連續監測,其中在線監測手段是企業最常用的手段。表1是FID和PID檢測器的比較表。

在線監測常常使用PID或FID手段,但第三方檢測時常采用一些物理或化學的方法進行檢測。常用有機化合物的評價方法如表2所示:



除此之外,一些特殊的化合物也會采用其它手段進行分析與評價,比如CS2采用空氣質量 二硫化碳的測定 二乙胺分光光度法GB/T14680-1993,H2S采用《空氣和廢棄監測分析方法》第五篇第四章 亞甲基藍分光光度法(B),硫酸酸霧采用固定污染源廢氣 硫酸霧的測定 離子色譜法HJ544-2016,臭氧 環境空氣 臭氧的測定 靛藍二磺酸鈉分光光度法 HJ504-2009等。總之,合適的評價手段是一把尺子,對企業、治理公司以及第三方評價機構都是至關重要的。揮發性有機物(VOCs)的評價是打贏藍天保衛戰的重要一環,三方均應該為之努力。


附:VOCs監測常用儀器及原理



國內常用VOCs檢測方法主要有氣相色譜-火焰離子化檢測法(GC-FID)、傅里葉紅外法(FTIR)、光離子化檢測法(PID)以及熱紅外成像(OGI)等



石化行業VOCs檢測儀指南



《石化企業泄漏檢測與修復工作指南》適用于石油煉制工業、石油化學工業開展設備、密封點揮發性有機物泄漏檢測與修復工作。



標準中規定開展LDAR應配備氫火焰離子化檢測儀,結合企業受控密封點類別及相應的數量配置檢測儀數量,并且規定儀器量程及分辨率、采樣流程及探頭應符合HJ733的規定。



而在2015年初頒布的《HJ733-2014泄漏和敞開液面排放的揮發性有機物檢測技術導則》中儀器檢測器類型包括火焰離子化檢測器、光離子化檢測器和紅外吸收檢測器等,也可以是其它類型的檢測器。



一、氣相色譜






組成



氣路系統、進樣系統、分離系統、溫控系統、檢測記錄系統。









組分能否分開,關鍵在于色譜柱;分離后組分能否鑒定出來則在于檢測器,所以分離系統和檢測系統是儀器的核心。


1、色譜柱

氣相色譜柱有多種類型,按照色譜柱內徑的大小和長度,可分為填充柱和毛細管柱:填充柱的內徑在2-4mm,長度為1-10m左右,毛細管柱內徑在0.2-0.5mm,長度一般在25-100m。





2、檢測器



熱導檢測器(TCD)



基于不同物質具有不同的熱導系數,幾乎對所有VOCs都有響應,可以檢測各種VOCs,且樣品不被破壞,但靈敏度相對較低。
氫火焰離子化檢測器(FID) 



利用有機物在氫火焰的作用下化學電離而形成離子流,借測定離子流強度進行檢測。
檢測時樣品被破壞,一般只能檢測那些在氫火焰中燃燒產生大量碳正離子的有機化合物。
電子捕獲檢測器(ECD):
利用電負性物質捕獲電子的能力,通過測定電子流進行檢測。ECD具有靈敏度高、選擇性好,是目前分析痕量電負性有機化合物最有效的檢測器。
火焰光度檢測器(FPD) 
對含硫和含磷的化合物有比較高的靈敏度和選擇性,當含磷和含硫物質在富氫火焰中燃燒時,分別發射具有特征的光譜,透過干涉濾光片,用光電倍增管測量特征光的強度。
質譜檢測器(MSD) 



采用高速電子撞擊氣態分子或原子,將電離后的正離子加速導入質量分析器中,按質荷比(m/z)的大小順序進行收集和記錄,是一種質量型、通用型檢測器。




檢測原理



VOCs進入汽化室后被即載氣帶入色譜柱,柱內含有液體或固體固定相,由于樣品中各組分的沸點、極性或吸附性能不同,每種組分都傾向于在流動相和固定相之間形成分配或吸附平衡。
由于載氣的流動,使樣品組分在運動中進行反復多次的分配或吸附/解吸附,在載氣中濃度大的組分先流出色譜柱,當組分流出色譜柱后,立即進入檢測器。
檢測器能夠將樣品組分轉變為電信號,電信號的大小與被測組分的量或濃度成正比,電信號被放大記錄形成氣相色譜圖。



用途



氣相色譜可以分析VOCs的種類及含量。



二、PID檢測器





檢測原理




使用紫外燈(UV)光源將有機物分子電離成可被檢測器檢測到的正負離子(離子化)。檢測器捕捉到離子化了的氣體的正負電荷幵將其轉化為電流信號實現氣體濃度的測量。
氣體離子在檢測器的電極上被檢測后,很快會電子結合重新組成原來的氣體和蒸汽分子。PID 是一種非破壞性檢測器,它不會改變待測氣體分子。可以實現連續實時檢測。

可測VOCs




● 芳香類:含有苯環的系列化合物,比如:苯、甲苯、乙苯、二甲苯等;
● 酮類和醛類:含有C=O 鍵的化合物。比如:丙酮、丁酮(MEK)、甲醛、乙醛等;
● 胺類和氨基化合物:含N的碳氫化合物。比如:二乙胺等;
● 鹵代烴類:如三氯乙烯(TCE)、全氯乙烯(PCE)等;
● 含硫有機物:甲硫醇、硫化物等;
● 不飽和烴類:丁二烯、異丁烯等;
● 飽和烴類:丁烷、辛烷等;
● 醇類:異丙醇(IPA)、乙醇等。




選擇性和靈敏性



PID可以非常精確和靈敏地檢測出PPM級的VOCs,但是不能用來定性區分不同化合物。
使用PID時特別要注意校正系數(CF,也稱之為響應系數),它們代表了用PID測量特定某種VOCs氣體的靈敏度,它用在當以一種氣體校正PID后,通過CF可以直接得到另一種氣體的濃度,從而減少了準備很多種標氣的麻煩。
用途


●初始個人防護確定
 泄漏檢測
 事故區域確認
 泄漏物確認
 清除污染



三、差分光學吸收光譜儀




檢測原理





基于痕量VOCs氣體成份對光輻射(紫外/可見)的“指紋”特征吸收,實現定性和定量測量,可同時測量多種氣體成份。
優點
●  測量精度高,檢測下限低;
●  非接觸測量,不改變被測氣體的性質和濃度;
●  可實時、連續、長期運行,操作簡單,運行成本低;
●  可同時監測多種污染氣體;
●  遠距離遙測、監測范圍廣,數據具有代表性 。


應用




以其高分辨率和高精度并可同時對多種氣體進行測試的優點,廣泛應用于城市空氣質量監測,排放源氣體監測等場合。



四、紅外吸收檢測儀




  傅里葉紅外多組分氣體分析儀(開放式)
檢測原理
儀器通過對大氣痕量氣體成分的紅外輻射 “指紋” 特征吸收光譜測量與分析,實現對多組分氣體的定性和定量在線自動監測。
其工作原理為光譜儀的光學鏡頭接收來自紅外光源發射的紅外輻射,輻射的紅外線在開放或密閉的空氣中傳播.
光譜儀接收到的紅外輻射后,經由干涉儀的調制被紅外探測器檢測,再由光譜儀的電子學部件和相應數據處理模塊完成干涉圖的轉換和存儲,并通過傅里葉變換,將干涉圖轉換成紅外光譜。




優點
可以定量和定性分析測定快速、不破壞試樣、試樣用量少、操作簡便、分析靈敏度較高。
五、激光檢測儀


檢測原理
采用可調諧半導體激光吸收光譜(TDLAS)氣體分析技術。與傳統紅外光譜技術相同,TDLAS 氣體分析技術本質上是一種吸收光譜技術,通過分析所測光束被氣體的選擇吸收獲得氣體濃度。


但與傳統紅外光譜技術不同,TDLAS 氣體分析技術采用的半導體激光光源的光譜寬度遠小于氣體吸收譜線的展寬。


因此,TDLAS 技術具有非常高的光譜分辨率,可以對某一特定氣體的吸收譜線(常被稱為單線光譜分析技術)進行分析獲得被測氣體濃度。

優點
TDLAS技術具有靈敏度高、選擇性好、實時、動態等特點,利用波長調制技術在 1 s 的檢測時間內檢測限可達到ppm級甚至ppb 級;同時可以在高溫、高壓、高粉塵及強腐蝕環境下測量,因此成為了惡劣條件下氣體污染物在線監測的首要選擇。

不足
甲醛等低分子量物質,對空氣中其它危害性較大的痕量 VOCs 成分的選擇性監測存在一定的困難。


VOCs檢測儀對比


GC-FID檢測技術對大部分VOCs成分均有響應,并且是等碳響應,適合用于VOCs總量監測,也可通過更換色譜柱材料等方式實現特征成分的檢測


FTIR檢測技術因其光譜范圍寬,可同時檢測多種VOCs特征成分含量,響應速度快。


PID檢測器對低碳飽和烴響應較弱,且響應因子不一致,檢測器表面易受污染,不適合用于污染源VOCs在線監測。

依據美國標準“Method25A”和歐洲標準“EN 12619”的技術要求,規定固定污染源VOCs在線監測應采用GC-FID檢測技術采樣探頭、樣品輸送管路和分析儀中樣品管路應采用120℃以上高溫伴熱,應選用抗腐蝕和惰性化的材料,以減少樣品吸附。